Eddy-Mean Flow Interactions in Western Boundary Current Jets

An observationally driven theoretical study

42°N **Stephanie Waterman MIT-WHOI Joint Program** 39°N **Steven Jayne** 36°N Woods Hole Oceanographic Institution 33°N **Nelson Hogg Cornell University** 30°N March 3, 2008 27°N 136°E 148°F 156°E 140°E 144°F 152°E 160°E

weekly snapshots of the 2.1 m SSH contour (proxy for the Kuroshio Extension jet axis) during the KESS observational period: May 2004 – June 2006

a baroclinic, unstable, boundary-forced jet in an open domain

• QG

- fully non-linear
- 1 or 2-layer
- unstable jet inflow
- insensitive to outflow condition
- sponge layers on all boundaries to model
 "open ocean"

• posed in terms of time-mean and deviation from timemean state

simplifications we employ and the physics we retain are appropriate to the Kuroshio Extension system

 weakly depthdependent below the thermocline

 subject to mixed instability

• strongly nonlinear

simplifications we employ and the physics we retain are appropriate to the Kuroshio Extension system

• strongly nonlinear

simplifications we employ and the physics we retain are appropriate to the Kuroshio Extension system

simplifications we employ and the physics we retain are appropriate to the Kuroshio Extension system

eddies play a critical role in the downstream evolution of the jet through:

- 1. stabilizing the jet
- 2. driving the time-mean recirculations

eddies play a critical role in the downstream evolution of the jet through:

- 1. stabilizing the jet
- 2. driving the time-mean recirculations

eddies play a critical role in the downstream evolution of the jet through:

- 1. stabilizing the jet
- 2. driving the time-mean recirculations

eddies play a critical role in the downstream evolution of the jet through:

time-mean circulation forced

by the eddy forcing

20

- 1. stabilizing the jet
- 2. driving the time-mean recirculations

eddies play a critical role in the downstream evolution of the jet through:

time-mean circulation forced

by the eddy forcing

- 1. stabilizing the jet
- 2. driving the time-mean recirculations

the mechanism is unchanged by the addition of baroclinicity and/or baroclinic instability

eddy-driven time-mean circulation can be predicted empirically given the stability properties of the upstream jet

eddy-driven time-mean circulation can be predicted empirically given the stability properties of the upstream jet

Model – Observation Comparison:

consistencies in downstream development of mean and eddy properties suggest model has relevance to oceanic system

> x=5 x=40

> x=60

1.2

0.8

0.6

0.4

0.2

0

-0.2

time-mean jet structure in upper layer model run with Kuroshio-like parameters

15

distance from jet axis distance from jet axis distance from of distance from of

-5

-10

-15

Model – Observation Comparison:

consistencies in downstream development of mean and **eddy** properties suggest model has relevance to oceanic system

covariance ellipses
ℓ tilt > 0 (uv > 0)
tilt < 0 (uv < 0)
time-mean jet axis
time-mean EKE

In summary...

model teaches us the importance of eddy-mean flow interactions in the Kuroshio system

- eddies stabilize the jet
- eddies drive the time-mean recirculations
- zonal variation is important
- jet criticality determines mean recirculation properties
- model-observation consistencies suggest model has relevance to real oceanic system
- model in Kuroshio-like regime suggests Kuroshio is dominated by barotropic instability and eddies can drive recirculations of strength and extent consistent with observations

More info: snw@mit.edu

Time-mean circulation for a model run with Kuroshio Extension-like parameters (β =0.03, Fr₁=1, Fr₂=0.25)

