Eddy-Mean Flow Interactions
in Western Boundary Current Jets

An observationally driven theoretical study

Stephanie Waterman

MIT-WHOI Joint Program

Steven Jayne
Woods Hole Oceanographic
Institution

Nelson Hogg

Cornell University

March 3, 2008

136°%E 140%E 144°E 148°E 152°E 156°E 160°E

weekly snapshots of the 2.1 m SSH contour (proxy
for the Kuroshio Extension jet axis) during the
KESS observational period: May 2004 — June 2006



The Model

a baroclinic, unstable, boundary-forced jet in an open domain
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The Model

simplifications we employ and the physics we retain are
appropriate to the Kuroshio Extension system

e weakly depth-
dependent below
the thermocline

* subject to mixed
instability

e strongly nonlinear



The Model

simplifications we employ and the physics we retain are
appropriate to the Kuroshio Extension system

deep zonal velocities at KESS 2

 weakly depth-
dependent below
the thermocline

velocity (m/s)

-04
Julo4 Oct04 Jan05 Apr05 Jul05 Oct05 Jan0é Apr06

vertical coherence between records at 1500 m and 5000 m
1

- 95%.
05! confidence

coherence

frequency (CPD)



The Model

simplifications we employ and the physics we retain are
appropriate to the Kuroshio Extension system
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The Model

simplifications we employ and the physics we retain are
appropriate to the Kuroshio Extension system

zonal velocity at 1500 m
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Model Results:

eddies play a critical role in the downstream evolution of the jet through:

1. stabilizing the jet
2. driving the time-mean recirculations

The Effective “Eddy Force”
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Model Results:

eddies play a critical role in the downstream evolution of the jet through:

1. stabilizing the jet
2. driving the time-mean recirculations
downstream evolution of
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Model Results:

eddies play a critical role in the downstream evolution of the jet through:

1. stabilizing the jet
2. driving the time-mean recirculations

Eddy Vorticity Flux Forcing
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Model Results:

eddies play a critical role in the downstream evolution of the jet through:

1. Stabi“Zing the jet time-mean circulation forced
2. driving the time-mean recirculations o, DY the eddy forcing
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Model Results:

eddies play a critical role in the downstream

1. stabilizing the jet

2. driving the time-mean recirculations

Eddy Vorticity Flux Forcing
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Model Results:

the mechanism is unchanged by the addition of baroclinicity

and/or baroclinic instability

* regardless of unstable
configuration - eddies drive
recirculations

* baroclinic instability
postpones (in x) the
barotropic mechanism:

it creates (or adds to) the
barotropically unstable jet

* new thickness fluxes

reduce recirculation strength
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Model Results:

eddy-driven time-mean circulation can be predicted
empirically given the stability properties of the upstream jet
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Model Results:

eddy-driven time-mean circulation can be predicted
empirically given the stability properties of the upstream jet

Recirculation Strength Dependence on Inflowing Jet Stability
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Model — Observation Comparison:
consistencies in downstream development of mean and eddy
properties suggest model has relevance to oceanic system
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MOdeI —_— Obsel’vation Comparison: covariance ellipses
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In summary...

model teaches us the importance of eddy-mean flow
Interactions in the Kuroshio system

« eddies stabilize the jet Time-mean circulation for a model run with
Kuroshio Extension-like parameters

» eddies drive the time-mean (B=0.03, Fr =1, Fr.=0.25)

recirculations R

 zonal variation is important

e jet criticality determines mean
recirculation properties
* model-observation consistencies
suggest model has relevance to
real oceanic system
60
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20

« model in Kuroshio-like regime 20
suggests Kuroshio is dominated
by barotropic instability and
eddies can drive recirculations of 20 0 X
strength and extent consistent y

with observations time-mean streamfunction
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